# **Polymer Bulletin**

© Springer-Verlag 1981

## $\alpha$ , $\omega$ -Difunctionalized Poly(p-thiophenylene) Oligomers 1. Synthesis and Properties

### G. Daccord and B. Sillion

Institut Français du Pétrole, C.E.D.I., BP no. 3, 69390 Vernaison, France

#### Summary

We describe new telechelic poly(p-thiophenylene) monodispersed oligomers and statistical ones. They were obtained by step synthesis and unbalanced condensation. By these ways we obtained oligomers with terminal bromo, cyano, amino, methyl and hydroxyethylester, oxazoline and N-hydroxyethylamide groups.

#### Introduction

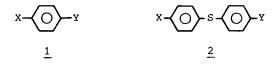
Poly(p-thiophenylene) chains whose properties in the homopolymer state are known (1) have not been used, to our knowledge, to make segmented copolycondensed polymers. The synthesis of nonfunctional oligomers has been described by several authors (14, 15, 22) with the aim of obtaining model molecules.

Diamino telechelic oligomers have been described (16) as well as two synthesis of cyano products (10, 23) whose nitrile functions are thus trimerized.

In this paper we describe the synthesis of  $\alpha$ ,  $\omega$  - difunctionalized poly(p-thiophenylene) oligomers having the formulas:

-s with n = 2, 4, 6 (monodispersed products)

n statistical (9  $\leq$  n  $\leq$  16)


Z being Br (3n), CN (4n), NH<sub>2</sub> (5n), COOCH<sub>3</sub> (6n),

$$COOCH_2CH_2OH$$
 (7n), (8n),  $CONHCH_2CH_2OH$  (9n)

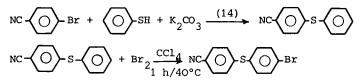
Result and Discussion

Products

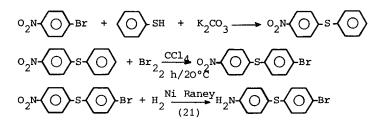
Most of the products used are not commercial and were synthesized. Products 2b, 2c and 2d were prepared in several steps.



0170-0839/81/0004/0459/\$01.60


1a X = BrY = CN2a X = Y = BrY = COOH2b X = Y = SH1b X = SH1c X = SH $Y = NH_2$ 2c X = Br Y = CNX = Br  $Y = NHCOCH_2$ 2đ

The bis(p-mercaptophenyl) sulfide 2b was obtained in three different ways:


- by chlorosulfonation of diphenylsulfide (3) followed by reduction (4). (Total yield : 5-50%).
- by nucleophilic substitution of the sodium salt of t-butylmercaptan on 2a and reduction of the bisthioether by means of sodium-pyridine (5) (Total yield = 30-40%).
- in a more reproducible way and with a better overall yield (60%) from phenol according to the sequence of the following reactions:

$$(CH_{3})_{2}NCSO \bigcirc S \bigcirc SCON(CH_{3})_{2} + KOH \xrightarrow{(7)}{(CH_{3})_{2}NCSO} SCON(CH_{3})_{2} + KOH \xrightarrow{(7)}{(CH_{3})_{2}NCSO} SCON(CH_{3})_{2} + KOH \xrightarrow{(7)}{(CH_{3})_{2}NCSO} SCON(CH_{3})_{2} + KOH \xrightarrow{(7)}{(2 + 100)} SCON(CH_{3}) + KOH \xrightarrow{(7)}{(2 + 100)} + KOH \xrightarrow{(7)}{(2 + 100)} SCON(CH_{3}) + KOH \xrightarrow{(7)}{(2 + 100)} + KOH \xrightarrow{(7)}{($$

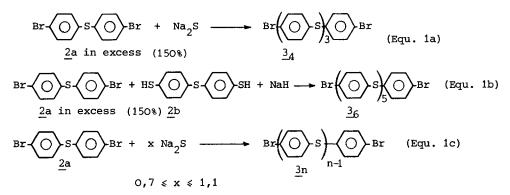
p-bromo-p-cyanodiphenyl sulfide  $\underline{2}c$  is obtained in two steps from  $\underline{1}a$  (Total yield = 60%).



p-bromo-p'-acetamidodiphenylsulfide 2d is obtained from p-chloronitrobenzene according to the following scheme (Total yield = 59%).



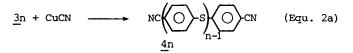
460


$$H_2N O S O Br + CH_3COC1 - CH_3CONH O S O Br$$

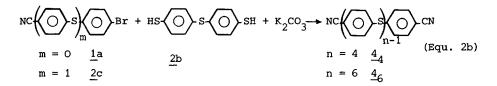
 $\alpha$ , $\omega$ -difunctionalized oligomers.

The obtaining of functionalized products whose reactive functions are alcohols, esters or amines compelled us to prepare intermediate dibromo and dicyano oligomers. All the synthesized products are collected in Table 1.

#### Synthesis of $\alpha, \omega$ - dibromo oligomers.


Oligomers 3n (n = 4,6 and statistical) were obtained by unbalanced polycondensation between 2a in excess and sodium sulfide or 2b. Owing to their poor solubility and difficulty of purification, we can thus obtain only the first term arising from the duplication of the monomer (Eqs 1a and 1b) with sufficient purity to consider it to be monodispersed.

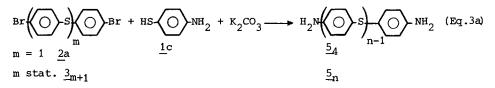



The monodispersed products were purified by successive crystallizations until a constant melting point. Statistical oligomers (Eq. 1c) were contineously extracted to keep out the lowest one. Their number mean weight was determined by titrating terminal bromines by X-ray fluorescence on solid-state samples (precision 5%). Products with mean weight situated between 900 and 1800 were prepared in this way.

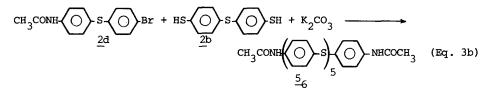
#### Synthesis of $\alpha, \omega$ -dicyano oligomers.

The products were obtained by the action of an excess of cuprous cyanide on dibromo products  $\underline{3}$  (10), in an aprotic dipolar solvent with a high boiling point, mainly N,N-dimethylbenzamide (substitution yield = 95% for the statistical oligomers).




Meanwhile in the case of compounds  $\frac{4}{4}$  and  $\frac{4}{6}$  the yield is higher when the cyano-bromo products 1a and 2c are condensed with the bismercaptan 2b. This reaction is selective and gives only the aromatic nucleophilic substitution on the bromine bound carbon (14).




Product  $\underline{4}_6$  is difficult to purify but a pure sample was obtained by high pressure liquid chromatography so as to confirm its structure.

Synthesis of  $\alpha, \omega$  -diamino oligomers.

A patent (16) describes the action of p-hydroxyaniline on dibromotelechelic poly(p-thiophenylene) chains. We used p-mercaptoaniline to synthesize products  $5_A$  and  $5_n$  (substitution yield = 90-93% for statistical products).



Products  $\underline{\mathbf{5}}_{\mathbf{6}}$  was obtained as a diacetamide derivative according to the reaction



Owing to its poor solubility, it can be purified only by extraction with pyridine.

Synthesis of  $\alpha, \omega$ -diester oligomers.

The reaction of the sodium salt of p-mercaptobenzoic acid 1b with a dibromo oligomer 3n followed by an esterification step, either directly by means of methyl iodide or methyl tosylate (12) or in one more step by the bis(acid chloride), gives oligomers with two more phenylene units than the bromo product:

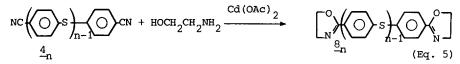
$$Br\left(\bigcirc S\right) \bigcirc Br + HS - \bigcirc COOH + NAH \xrightarrow{1. NMP} 2.TSOCH_3$$

$$\underline{3n} \qquad \underline{1b} \qquad CH_3OCO\left(\bigcirc S\right) \bigcirc COOCH_3 (Eq. 4a)$$

$$\underline{6}_{n+2}$$

Since yield is mediocre, in particular for the shortest oligomers  $(\underline{6}_4 \text{ and } \underline{6}_6)$ , we used the alcoholysis of nitrile in an acidic medium (26) or in the presence of a metal catalyst (Cu(OAc)<sub>2</sub>, Ti(OBu)<sub>4</sub> (13)), according to the solubility of the products, to synthesize products  $\underline{6}_2$ ,  $\underline{7}_4$  and  $\underline{7}_6$ .

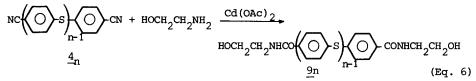
| tra IR(cm <sup>-1</sup> ) / RMN (ppm/TMS) | 558         39:50-1470-1390-1065-1005-820           774         305-720           774         30:60-1300-1082-415           30:60-1470-1385-1090-1010-820 | 6 2220-2230 / 7,7-7,2 (m)<br>2 2220<br>8 2220<br>8 2220<br>3440-3340-1280<br>1 200<br>1 200<br>1 200<br>2 200<br>2 2 2 0<br>2 2 2 2 0<br>2 2 2 0<br>2 2 0<br>2 2 0 | · · · ·        | 1725-1230/3,85 (s-6H) 7,1-8 (8H)<br>1725-1715/3,83 (s-6H) 7,1-8 (16H)<br>1730/3,85(s-6H) 7,25-7,5(20H)<br>1730/3,85(s-6H) 7,8-7,9 (6H)<br>1730<br>1730<br>1730<br>3430-1715<br>3430-1715                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1640-1260/3,4-4,7 (m BH)<br>7,2-8,0 (m BH)<br>1640-1260/3,8-4,7 (m BH)<br>7,1-8,0 (m 16H)<br>1645-1255                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3400-3240-1630-1620-1560-1545/<br>3.8 (8H)-4.6 (2H)-7.2-7.9(8H)-8.4 (2H)<br>3420-3320-1640<br>3430-3320-1635<br>3420-3320-1635 |
|-------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|
| Mass spectra                              | ₩ ₩<br>+ +<br>Σ Σ                                                                                                                                         | M.+ = 236<br>M.+ = 452<br>M.+ = 668                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | M•⁺ = 732      | =<br>+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | M <sup>-+</sup> -2H <sub>2</sub> 0= 540                                                                                        |
| œ <sup>د</sup>                            | 20,62<br>20,0 <sup>4</sup> 0,5<br>12,0 <sup>4</sup> 0,5                                                                                                   | <ul> <li>&lt; 0.05</li> <li>&lt; 0.05</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                | 0,3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | < 0,05                                                                                                                         |
| s                                         |                                                                                                                                                           | 13,56<br>13,34<br>21,24<br>21,24<br>23,96<br>23,96<br>23,96<br>23,0<br>22,22<br>23,0<br>21,33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 21,86<br>23,05 | 18,54<br>21,80<br>23,59<br>19,92<br>19,92<br>15,62<br>15,62<br>18,6<br>18,6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 9,88<br>9,8<br>17,79<br>17,6<br>21,17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8,89<br>8,85<br>16,68<br>15,5<br>13,5<br>18,5                                                                                  |
| 0                                         |                                                                                                                                                           | 5<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4,37           | 12,34<br>8,72<br>8,74<br>11,63<br>11,63<br>16,75<br>16,75<br>12,07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 9<br>9,3<br>4,6<br>,4<br>,2<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 17,76<br>17,29<br>11,10<br>11,10<br>8,07                                                                                       |
| z                                         |                                                                                                                                                           | 11,62<br>11,62<br>6,19<br>6,19<br>6,19<br>6,48<br>6,48<br>6,33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3,82<br>3,60   | 7,0<br>2,35<br>0,3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8,64<br>3,55<br>3,70<br>3,70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 7,77<br>7,47<br>6,3<br>6,3<br>3,53<br>3,53<br>4,82                                                                             |
| Ŧ                                         |                                                                                                                                                           | 3,55<br>3,54<br>3,54<br>4,55<br>4,56<br>4,56<br>4,56<br>4,56<br>5,56<br>5,56<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4,37           | 4,28<br>4,00<br>4,00<br>4,56<br>4,372<br>4,172<br>4,15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4,94<br>4,55<br>4,55<br>4,26<br>4,26<br>4,10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5,59<br>7,59<br>4,58<br>4,58<br>4,58<br>70<br>8,70<br>8,70                                                                     |
| ບ<br>                                     |                                                                                                                                                           | 71,19<br>71,31<br>69,03<br>68,2<br>68,2<br>67,7<br>66,67<br>65,90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 65,57<br>64,98 | 64,84<br>65,39<br>66,55<br>66,12<br>61,94<br>62,12<br>62,13<br>62,13<br>62,13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 66,67<br>66,7<br>66,64<br>65,64<br>65,64<br>65,8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 59,98<br>59,68<br>62,48<br>62,7<br>63,61<br>63,3                                                                               |
| t. Anal                                   | exp<br>exp<br>exp                                                                                                                                         | ដុទ្ធដ ទុំដទ្ <del>ខ</del> ដុទ្ធ ដុទ្ធ ដ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | exp<br>exp     | \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | et to the the the the the the the the text of | \$ t \$ t \$ t \$ t \$ t \$                                                                                                    |
| <pre>Mp (crystallizat.<br/>solvent</pre>  | 170-2 (toluene)<br>210 ( " )<br>260-275                                                                                                                   | 136 (ACOH)<br>205 (ACOH)<br>(9C1)<br>235-245<br>132 (CHC1 <sub>3</sub> )<br>230-245                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                | 127 (Et0H)<br>200 (CHCl <sub>3</sub> )<br>190-200 (xyleme)<br>190-200 (DMF)<br>230-240<br>198 (ACOH)<br>190-200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 173 (EtOH)<br>220 (Ø Cl)<br>220-230                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 219 (EtCH)<br>264 (pyridine)<br>225-235<br>255-265                                                                             |
| Yield<br>(2)                              | 40<br>75<br>86                                                                                                                                            | 85<br>97<br>91<br>91<br>91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 20             | 95<br>5-10<br>20<br>30<br>90<br>80<br>80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 90<br>56<br>80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 95<br>95<br>95                                                                                                                 |
| Eq.<br>Synth                              |                                                                                                                                                           | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | æ              | 44<br>4a<br>4a<br>4<br>4<br>4<br>4<br>4<br>4<br>6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | പറം                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ى م ى م                                                                                                                        |
| Products                                  | <u>س</u>                                                                                                                                                  | $n=2 \frac{4}{4}$ $n=4 \frac{4}{4}$ $n=6 \frac{6}{6}$ $\hat{n}=11,3 \frac{1}{2}1,3$ $n=4 \frac{5}{64}$ $\hat{n}=13,3 \frac{5}{5}1_{3-2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | n≓ 6           | $c = coocH_3  n = 2  \underline{c}_2 \\ n = 4  \underline{c}_4 \\ n = 6  \underline{c}_6 \\ n = 8  \underline{c}_8 \\ \overline{n} = 13, 3  \underline{c}_{13,3} \\ \overline{n} = 13, 3  \underline{c}_{13,3} \\ c = coo OA \\ n = 6  \underline{c}_6 \\ n = $ | ла<br>ла<br>6<br>8<br>1<br>8<br>1<br>8<br>1<br>8<br>1<br>8<br>1<br>8<br>1<br>8<br>1<br>8<br>1<br>8<br>1<br>8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | = CONH∕ΩH n= 2 <u>9</u><br>n= 4 <u>9</u> 4<br>n= 6 <u>9</u> 6<br>ñ=11,3 <u>9</u> 11,3                                          |
|                                           | Z= Br                                                                                                                                                     | Z= CN<br>Z= NH <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Z= NHAC        | Z= C00CH <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Z= CONH                                                                                                                        |


$$(n = 2) + CH_{3}OH + HCl \longrightarrow CH_{3}OCO \bigcirc S \bigoplus COOCH_{3} (Eq. 4b)$$

$$NC (\bigcirc S) \bigoplus CN + HOCH_{2}CH_{2}OH \longrightarrow HOCH_{2}CH_{2}OCO (\bigcirc S) \bigoplus O = COOCH_{2}CH_{2}OH$$

$$\underbrace{4_{2}, 4_{4}, 4_{6}}_{4_{6}} (n = 4, 6) \underbrace{7_{4}, 7_{6}}_{4_{7}} (Eq. 4c)$$

Synthesis of  $\alpha$ ,  $\omega$ -bis(1, 3-oxazoline-2-yl) oligomers.


The reaction of ethanolamine on a nitrile in the presence of a cadmium salt as catalyst (11) gives the corresponding oxazoline with excellent yields:



This reaction was used for the synthesis of soluble oligomers (n = 2, 4 and 6).

Synthesis of  $\alpha$ , $\omega$ -dialcohol oligomers.

These alcohols are the basic hydrolysis products of the corresponding oxazolines. They are prepared by refluxing nitrile in ethanolamine in the presence of a cadmium salt. Statistical oligomers 4, although insoluble, react quantitatively in these conditions, with the reaction being stopped when all the nitrile functions detected by means of their IR band at  $2220 \text{ cm}^{-1}$  have desappeared.



#### Experimental

The products were characterized by means of their IR spectra (Perkin-Elmer 377 instrument), RMN spectra (Perkin-Elmer R 24 spectrometer), mass spectra and elemental analysis.

Dipolar aprotic solvents (N,N-dimethylformamide (DMF), N-methylpyrolidone (NMP), N,N-dimethylbenzamide (DMB)) were distilled twice form phosphoric anhydrid, with the DMB being prepared according to (20).

<u>p-bromobenzonitrile</u>. It was prepared from p-bromoaniline according to (22) and crystallized from hexane. Yield = 60%. Mp = 114°C.

<u>p-mercaptobenzoic acid</u>. It was prepared from p-aminobenzoic acid according to (14) and purified by esterification (CH<sub>3</sub>OH-HCl), distillation (Bp<sub>2</sub> = 85°C) and saponification (KOH-H<sub>2</sub>O). After filtration and drying, the product was obtained with an overall yield of 58%. Mp = 220°C.

<u>p-mercaptoaniline</u>. It was prepared by reduction of p-chloronitrobenzene according to (18) and distillated ( $Bp_1 = 85^{\circ}C$ ). Yield = 50%.

464

bis(p-bromophenyl) sulfide. It was prepared by bromination of diphenyl-sulfide according to (2, 19) and crystallized from ethanol. Yield = 85 %. Mp = 113°C.

bis(p-mercaptophenyl) sulfide. The first three steps of the synthesis are described (6, 7). The last step is carried out by refluxing, for 1 hour, 39.2 g (0.1 mole) of bis(p-N,N-dimethylthiocarbamatephenyl) sulfide with 28.5 g (0.5 mole) of potash in 200 ml of ethanol. The solution was neutralized with hydrochloric acid, and the product was filtered. After crystallization from ethanol, we obtained 2b with a yield of 60%. Mp =  $117^{\circ}C$ .

<u>p-cyanodiphenylsulfide</u>. Prepared according to (14). The product was crystallized from a hexane-ethanol blend (90/10). Yield = 95%. Mp =  $30^{\circ}$ C.

p-bromo-p'-cyanodiphenylsulfide. The product was crystallized from a hexane-ethanol blend (40/60). Yield = 66%. Mp = 98.5°C.

<u>p-nitrodiphenylsulfide</u>. It was prepared in the same way as p-cyanodiphenylsulfide, starting from p-bromo-nitrobenzene. Yield = 90%. Bp $_{0,2}$  = 145°C.

<u>p-bromo-p'-nitrodiphenylsulfide</u>. The product was crystallized from ethanol. Yield = 82%. Mp = 92°C.

<u>p-bromo-p'-amino-diphenylsulfide</u>. The product was crystallized from a pentane-ether blend (50/50). Yield = 95%. Mp = 74°C.

<u>p-bromo-p'acetamidodiphenylsulfide</u>. To a solution of 28 g (0.1 mole) of p-bromo-p'-aminodiphenylsulfide in 200 ml of ether and 14 ml (0.1 mole) of triethylamine, we added 7.2 ml (0.1 mole) of acetyl chloride. After 1 hour at room temperature, the solid product was filtered, washed with water and crystallized from ethanol. Yield = 94%. Mp =  $168.5^{\circ}$ C.

 $\alpha_{\mathcal{M}}$ -dibromo oligomers. The operating mode is close to the one described for the synthesis of the polymer (24):

Product  $3_{11,3}$  (Eq. 1c),  $3_4$  (Eq. 1a) and  $3_6$  (Eq. 1b):

A blend of 108 g (0.45 mole) of sodium sulfide and 600 ml of NMP was dehydrated by heating at 200°C under a stream of nitrogen. 172 g (0.5 mole) of bis(p-bromophenyl)sulfide were then added, and the temperature was maintained for 3 hours at 200°C. After cooling, the solution was poured into 1.5 l of water. The solid was filtered, washed with water and methanol and then continuously extracted in a Kumagawa instrument with chloroform for 24 hours. The yield was 70 g of product containing 11% of bromine, which is a mean weight of M = 1454.

#### α*ω*-dicyano oligomers.

Product  $4_{11,3}$  (Eq. 2a): 20 g of dibromo oligomer  $3_{11,3}$  and 10 g of cuprous cyanide were heated in 85 g of DMB for 4 hours at 235 °C. After cooling, the excess of cuprous cyanide was destroyed with a hydrochloric solution of ferric chloride according to (10) or (25). The product was filtered, washed with water and methanol and continuously extracted with methanol during 24 hours.

Product  $\underline{4}_4$  (Eq. 2b) and  $\underline{4}_6$ : 38.4 g (0.105 mole) of p-bromobenzonitrile, 25 g (0.1 mole) of bis(p-mercaptophenyl)sulfide and 14.3 g (0.105 mole) of potassium carbonate wera heated in 250 ml of DMF for 3 hours at 120°C in an inert atmosphere. The solvent was vacuum distilled, the solid was washed with water and crystallized.

#### α ω -diamino oligomers.

Product  $5_{13.3}$  (Eq. 3a),  $5_4$  and  $5_6$  (Eq. 3b): 20 g of dibromo oligomer  $3_{11.3}$ , 6.5 g of p-mercapto-aniline and 3.6 g of potassium carbonate were heated in

100 g of DMB for 4 hours at 220°C in an inert atmosphere. After cooling, the solution was poured into 400 ml of water. The solid was filtered, washe with methanol and continuously extracted with methanol during 24 hours.

#### $\alpha \mu$ -diester oligomers.

Product  $\underline{6}_{13,3}$  (Eq. 4a): 20 g of dibromo oligomer  $\underline{3}_{11,3}$  and 9.3g of p-mercaptobenzoic acid salified by 2.9 g of sodium hydride were heated in 200 ml of NMP for 3 hours at 200°C. The solution was cooled to 120°C, and 11 g of methyl tosylate were added. After 12 hours, the reaction was stopped. The working up is the same as the one for product  $\underline{5}_{13,3}$ .

Product <u>6</u><sub>2</sub> (Eq. 4b), <u>7</u><sub>4</sub> and <u>7</u><sub>6</sub> (Eq. c): Bis(p-cyanophenyl)sulfide was alcoholized with methanol according to (26) and with ethylene glycol (13).

#### $\alpha, \omega$ -bis(N-(2-hydroxyethyl) amide) oligomers.

Products  $\underline{9}_2$ ,  $\underline{9}_4$ ,  $\underline{9}_6$ ,  $\underline{9}_{11,3}$  (Eq. 6): 10 g of nitrile  $\underline{4}_n$  were refluxed in 30 ml of ethanolamine for 2 hours in the presence of 500 mg of cadmium acetate. After cooling, the solution was poured into 100 ml of water. Products  $\underline{9}_2$  and  $\underline{9}_4$  were crystallized and  $\underline{9}_{11,3}$  was continuously extracted with methanol for 24 hours.

#### References

- 1. JONES, R.V. and HILL H.W.: Adv. Chem. Ser. 140, 174-85 (1975).
- 2. BOURGEOIS, E.D. and ABRAHAM A.: Rec. Trav. Chim. Pays-Bas 30, 407 (1911).
- BOURGEOIS, E.D. and PETERMANN K.: Rec. Trav. Chim. Pays-Bas 22, 349 (1903) and U.S.S.R. patent 706 409, Central Patents Index Section A <u>C33</u>, p. 51 (1980).
- 4. MARVEL, C.S. and CESAR P.D.: J. Am. Chem. Soc. 72 1033 (1950).
- 5. HUGHES, G.K. and THOMPSON E.O.P.: J. Proc. Roy Soc. N.S. Wales 83, 269 (1949).
- 6. ARIYAN, Z.S. and WILES L.A.: J. Chem. Soc. 3876, (1962).
- 7. NEWMAN, M.S. and KARNES H.A.: J. Org. Chem. 31, 3980 (1966).
- 8. Org. Synth. 35, 57 (1955).
- 9. Org. Synth., Coll. vol. II, 580 (1957).
- 10. U.S.S.R. patent 532 609 (1976) (CA 86 17308e)
- 11. WITTE, H. and SEELIGER W.: Angew. Chem. <u>84</u>, 343 (1972).
- 12. SHAW, J.E., KUNERTH P.S. and SHERRY J.J.: Tet. Lett. 9, 689 (1972).
- 13. ROBINSON, B.: J. Chem. Soc. 3417 (1963) ; NORTON R.V., Tet. Lett., <u>16</u>, 4643-46, (1972).
- 14. HADDAD, I., SHAUN HURLEY and MARVEL C.S.: J. Pol. Sci. Chem. Ed. <u>11</u>, 2793 (1973).
- 15. MONTAUDO, C., BRUNO G., MARAVIGNA P., FINOCCHIARO and CENTINO G.: J. Pol. Chem. Ed. 11, 65 (1973).
- 16. U.S.S.R. patent 676 597 (1979) (CA 91 158341a).
- 17. Org. Synth., Coll. vol. I, 514-516 (1956).
- 18. GILMAN, H. and GAINER G.C., J. Am. Chem. Soc., 71 1747-1749 (1949).
- 19. TOUSSAINT, J.: Bull. Soc. Chem. Belg., <u>54</u>, 319-339 (1945).
- 20. U.S.S.R. patent 525 717, Central Patent Index, Section A <u>Y37</u>, p. 52 (1977).
- 21. GILMAN, H. and SMITH BROADLENT H.: J. Am. Chem. Soc., <u>69</u>, 2053-2057 (1947).
- 22. CAMPBELL, J.R.: J. Org. Chem., 29, 1830-1833 (1964).
- 23. U.S. patent 3 987 016 (1976).
- 24. French patent applications 76 16014, 76 16016, 76 16017.
- 25. FRIEDMAN, L. and SHECKTER H.: J. Org. Chem., <u>26</u>, 2522-2524, Method A (1961).
- 26. MARCH, J. Advanced Organic Chemistry, 2nd Ed., p. 813-814, Mc Graw-Hill (1977).